УДК 666.3-121:544.022.822

О.Б. СКОРОДУМОВА, И.В. ШУБА, И.Е. КУХАРЕВА

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ТЕРМОДЕСТРУКЦИИ ВОЛОКНООБРАЗУЮЩИХ ЗОЛЕЙ ЭТИЛСИЛИКАТА МЕТОДОМ ДТА

Национальный технический университет «Харьковский политехнический институт»

Исследованы процессы термодеструкции этилсиликатных гелей – прекурсоров волокнистых наполнителей стоматологических композиционных материалов. Установлено, что вид растворителя и его физико-химические особенности влияют на механизм поликонденсации в гидролизатах этилсиликата и эластичность синтезируемых волокон.

Развитие композиционных стоматологических материалов в направлении повышения не только эстетического вида, но и физико-механических характеристик во многом лимитируется техническими характеристиками наполнителя.

Наиболее перспективным направлением развития композиционных стоматологических материалов является создание гибридных композитов, в которых частицы наполнителя имеют размеры 0,5— 1,5 мкм [1]. Известно, что использование наполнителя с волокнистой формой частиц значительно повышает физико-механические характеристики композиционного материала [2,3]. Однако выпускаемые промышленностью волокнистые материалы не удовлетворяют требованиям, предъявляемым к наполнителю по уровню дисперсности. Диаметр волокна, в основном, превышает верхний предел дисперсности, что приводит к резкому снижению эстетических характеристик композита. Наиболее перспективной для получения волокнистого наполнителя является золь-гель технология, позволяющая путем корректировки кинетических параметров проведения золь-гель перехода получать порошок заданного состава и дисперсности [4].

Однако, недостаточно изученными остаются

процессы, происходящие при получении волокнообразующего золя и их влияние на морфологические особенности синтезируемого волокнистого наполнителя.

Целью данных исследований являлось изучение влияния вида органического растворителя на процессы гелеобразования в гидролизатах этилсиликата, а также термодеструкцию гелей при термообработке.

Для исследований использовали технический этилсиликат-40, который гидролизовали в кислой среде в присутствии различных органических растворителей: этанола, бутанола, ацетона и комплексного растворителя на основе ацетона и этилацетата.

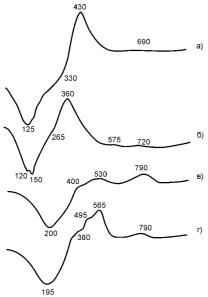
Составы гидролизатов этилсиликата приведены в табл. 1.

Известно, что золи этилсиликата приобретают волокнообразующие свойства при низком значении рН (<2,5) и отношении воды к алкоголяту (в присутствии растворителя) значительно менее стехиометрической нормы, когда образуются линейные полимеры, которые затем сшиваются друг с другом поперечными связями, образуя гель [4,5]. При повышении в реакционной смеси содержания

Таблица 1

Составы экспериментальных гидролизатов этилсиликата

№ геля	ЭТС-40	H ₂ O	HCl	Этанол	Бутанол	Ацетон	Комплексный растворитель
1	61,26	7,96	0,11	30,67	_	_	_
2	61,26	7,96	0,11	_	30,67	_	_
3	61,26	7,96	0,11	_	_	30,67	_
4	61,26	7,96	0,11	_	_	_	30,67


[©] О.Б. Скородумова, И.В. Шуба, И.Е. Кухарева, 2009

воды скорость гидролиза возрастает, однако при этом параллельно и последовательно активизируется реакция поликонденсации. Введение более 3 молей воды на 1 моль тетраэтоксисилана ускоряет процесс конденсации, в результате чего образуется хрупкий силикагель пространственного строения [6]. Принимая во внимание тот факт, что на инициацию процесса конденсации влияет не только вода, но и присутствие кислоты, для разработки состава волокнообразующего золя были приняты следующие условия: гидролиз этилсиликата должен проходить с недостатком воды в присутствии кислотного катализатора и преобладать над процессом поликонденсации.

Гидролиз проводили в закрытом объеме при нагреве до температуры не выше 65° С. Полученный золь выпаривали при температуре $65-75^{\circ}$ С в течение 3-4 суток до проявления волокнообразующих свойств.

Изучали процессы, происходящие в этилсиликатных гелях при нагреве, с помощью дифференциально-термического метода анализа (дериватограф OД-103, скорость нагрева образца в воздушной среде $13^{0}C/$ мин).

Кривые ДТА исследуемых гелей подобны (рисунок). Нагрев гелей сопровождается глубоким эндотермическим эффектом и двумя экзотермическими эффектами, каждый из которых сопровождается потерей массы. На кривых ДТА гелей, полученных с использованием этанола и бутанола, присутствует глубокий эндотермический эффект при $120-125^{\circ}$ С, являющийся суммирующим двух эффектов при 90 и 150° С и сопровождающийся потерей массы около 2.5 мас. % (рисунок а,6). Малая потеря массы при нагреве до 150° С, повидимому, объясняется выделением остаточного спирта и воды, так как основная масса этих ком-

Кривые ДТА этилсиликатных гелей с использованием: а — этанола; б — бутанола; в — ацетона; г — комплексного растворителя

понентов испаряется в процессе приготовления геля.

Ярко выраженный экзотермический эффект при $360-430^{\circ}$ С, также сопровождающийся дополнительной потерей массы (табл. 2), соответствует термоокислительной деструкции исследуемых гелей. При этом потеря массы геля связана с дегидроксилированием за счет конденсации поверхностных силанольных групп [7].

Слабо выраженные экзотермические эффекты в температурном интервале $690-720^{\circ}\mathrm{C}$ (рисунок а,б) при незначительной дополнительной потере массы (0,3-0,7) мас. %) согласно исследованиям [8] соответствуют разрушению клатратов воды в структуре геля, образование которых происходило в виде побочного эффекта при термоокислительной деструкции.

Потери массы геля минимальны, если в качестве растворителя используется этанол (табл. 2). В присутствии бутанола потери массы геля при нагреве заметно выше.

По сведениям работы [9] в присутствии HCl возможно протекание обратимой реакции:

$$C_4H_9OH+HCl \leftrightarrow C_4H_9Cl+H_2O.$$
 (1)

В случае удаления из системы воды (например, при ее испарении на стадии горячего гидролиза в открытой емкости) равновесие реакции смещается вправо.

За счет снижения содержания бутанола и соляной кислоты в гидролизате, по-видимому, происходит замедление реакции гидролиза, а процесс поликонденсации становится преобладающим. При этом создаются благоприятные условия для прошивки линейных полимеров поперечными мостиками Si—O—Si с образованием полиэтоксиси-

Таблица 2 Потери массы при нагреве этилсиликатных гелей

№ геля	Растворитель	Температура пика, ⁰ С	Потери массы в точке пика Общие Прирост		
TWIN		iirika, C	потери, %	потерь, %	
		125	2,74	_	
1	Этанол	430	6,16	3,42	
		690	6,85	0,68	
		120	2,40	_	
		150	3,42	1,02	
2	Бутанол	360	8,90	5,48	
		575	10,82	1,92	
		720	11,10	0,27	
		195	7,53	_	
3	Апотоп	495	18,15	10,62	
3	Ацетон	565	19,86	1,71	
		790	21,78	1,92	
		200	6,30	_	
4	Комплексный	315	10,62	4,32	
4	растворитель	530	15,41	4,79	
		790	17,26	1,85	

локсанов, что, в свою очередь, приводит к формированию в структуре геля клатратов воды. Как показано в работе [10] разрушение клатратов в процессе термоокислительной деструкции сопровождается на $\mathcal{L}TA$ -кривой увеличением площади эндоэффекта при $360^{\circ}C$ (рисунок).

Присутствие в геле полиэтоксисилоксанов подтверждается наличием на ДТА-кривой слабого эффекта при $575^{0}\mathrm{C}$, сопровождающегося потерей массы до 2%, так как известно, что термодеструкция полиэтоксисилоксанов наступает при $500-550^{0}\mathrm{C}$ [7].

Как видно из рисунка, площадь эндотермических эффектов разложения гелей, содержащих ацетон и комплексный растворитель, заметно выше, чем на первых двух ДТА-кривых. При приготовлении указанных гидролизатов наблюдалось помутнение раствора на начальной стадии гидролиза, что указывает на недостаточную однородность гидролизата вследствие, по-видимому, неполного растворения реагентов в этих растворителях. При этом микронеоднородности в гидролизате создаются вследствие смещения равновесия «гидролизполиконденсация» в сторону последней. Согласно [7], поликонденсация кремниевой кислоты протекает по механизму, когда скорость сшивки силоксановых цепей поперечными мостиками преобладает над скоростью удлинения Si-O-Si-цепи. В этом случае происходит преимущественное образование полиэтоксисилоксанов пространственного строения. В полученном геле основное количество воды, как взятой для гидролиза, так и выделяющейся при поликонденсации, оказывается или закрепленной в виде клатратов, или молекулярно адсорбированной во внутриглобульном пространстве. Выделение внутриглобульной воды при нагреве наблюдается при более высоких температурах, чем испарение физической воды, поэтому на ДТАкривых температура эндоэффекта смещается в область $195-200^{\circ}$ С (рисунок), а потери массы по сравнению с гелями, содержащими этанол и бутанол, увеличиваются примерно втрое (табл. 2). При термообработке волокнистого наполнителя происходит разрушение и потеря пластичности его, что подтверждается потерей массы при этом. В связи с этим для дальнейших исследований использовали этанол, обеспечивавший при минимальных потерях массы получение наиболее тонких и эластичных волокон после термообработки.

Таким образом, в результате проведенных исследований установлено, что изменение механизма поликонденсации этилсиликатного гидролизата связано, в основном, с природой и характеристиками органического растворителя. Растворите-

ли, содержащие ацетон, не обеспечивают полного растворения исходных компонентов, вследствие чего в золе создаются микронеоднородности, присутствие которых приводит к преимущественному образованию полиэтоксисилоксанов пространственного строения, что отрицательно сказывается на эластичности синтезируемых волокон. Наиболее эффективным растворителем является этанол, в присутствии которого процесс поликонденсации протекает с преимущественным образованием линейных полимеров, что позволяет получать эластичные волокна SiO_2 после термообработки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Уголева С. Композиционные пломбировочные материалы // Новое в стоматологии, 1995. Т.31. № 1. С.4-8.
- 2. $\mathit{Миарa}\ \Pi$. Эстетические принципы реставрации вкладками и накладками, изготовленными из "непрямых" композиционных материалов второго поколения // Стоматолог. 2001. N_2 8. C.16-23.
- 3. Dickerson W.G., Rmaldi P. The fiber-reinforced in lay-supported indirect composite bridge // Pract. Periodont. Aestet. Dent. 1996. Vol.7. P.1-4.
- 4. Zelinski B.J.J., Uhlmann D.R. Gel technology in ceramics \cdot //•J. Phys. and Chem. Solids. 1984. Vol.45. \mathbb{N}_{2} 10. \mathbb{P}_{2} 1069-1090.
- 5. Sakka S., Kamija K. The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fiber and films // J. Non-Cryst. Solids. 1982. Vol. 48. No. 1. P.31-46.
- 6. Каничи К., Тошинобу $\check{\mathcal{H}}$., Сумио С. Получение оксидных стекол из алкоголятов металлов методом зольгель. Исследование силоксановых полимеров, получаемых при гидролизе $\mathrm{Si}(\mathrm{OC_2H_5})_4//\mathrm{J}$. Сегат. Soc. Jap. 1984. Vol.92. N_2 5. $\mathrm{P.241-247}$.
- 7.•Скородумова О.Б., Семченко Г.Д., Гончаренко Я.Н. Кристаллизация SiO_2 из гелей на основе этилсиликата•//•Стекло и керамика. 2001. № 1. C.30-32.
- 8.•Гончаренко Я.Н., Скородумова О.Б., Семченко Г.Д. Получение кремнеземистых заполнителей для стоматологических композиционных материалов //•Огнеупоры и техническая керамика. 2001. N_2 9. C.21-24.
- 9. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия: учебник для ВУЗов; Ред. А.А. Петрова. 4-е изд. М.: Высш. шк., 1987. 592 с.
- 10. Скородумова О.Б., Гончаренко Я.Н., Колесниченко Л.П. Термическое превращение этилсиликатных гелей в технологии кремнеземистых наполнителей стоматологических пластмасс // Вестник ХПУ. 2000. Вып. 123. C.81-84.

Поступила в редакцию 25.11.2008