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The Method of Interpolation of the Charred
Zone in the Cross-Section of Wooden Beams

with Fire-Resistant Cladding Based
on Impregnated Plywood
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Abstract. This article discusses the developed method of interpolation of the
charring zone in cross-sections of wooden beams with fire-resistant cladding
basedon impregnatedplywoodusing ageneralizedmathematical descriptionusing
Bezier curve based on experimental studies. In accordance with the obtained tem-
perature distributions, using Bezier curve, with the help of modeling the charred
zone, it was possible to depict in detail the process of charring of samples-
fragments of a wooden beam without fire protection and with fire-resistant
cladding based on impregnated plywood with a layer thickness of 10 mm and
20 mm. Also, in accordance with the standard temperature regime of the fire,
the dependences of the side and end thicknesses, charring rates of the examined
fragments-samples of wooden beams depending on the exposure time were deter-
mined, and the appearance with the corresponding regression coefficients was
determined. The results of exposure of samples-fragments of wooden beams with
fireproof lining on the basis of impregnated plywood of different thicknesses and
without fireproof lining are also revealed. Sample research was based on visual
and graphic analysis of charring depth, which testified to the effectiveness of
fire-resistant cladding based on impregnated plywood.

Keywords: fire · wood · plywood · mathematical modeling of charring depth ·
Bezier lines

According to EN 1995–1-2:2004 Eurocode 5: Design of timber structures - Part 1–
2: General - Structural fire design requirements for mechanical resistance during fire
are established, structures must be designed and manufactured so that they retain their
load-bearing capacity during fire impact [1].

Within the limits of a part of the structural system for the calculation, it is necessary to
take into account the characteristic type of destruction under the influence of fire, which
are dependent on temperature: material properties and stiffness of a separate element,
the effect of heat propagation, temperature deformations. To do this, it is necessary to
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describe a mathematical model for predicting the geometric shape of the cross-section
of fire-resistant wooden beams under fire conditions, which is an urgent task for the
construction industry.

Taking into account the above, it should be noted that the establishment of regularities
determined by the geometric configurations of the charring zone of wooden beams with
fire-resistant cladding based on impregnated plywood from their structural parameters
is an urgent task.

The speed of thermal processes depends on the intensity of heat release in the charring
zone. The temperature regime is a quantitative characteristic of the change in heat release
during a fire depending on different burning conditions. The temperature regime during
a fire in the premises is understood as the change in the average volume temperature
of the environment during the burning time. The time during which a structure or its
element loses its functional properties (load-bearing, heat-insulating, enclosing) when
heated at a standard temperature regime is called fire resistance.

Solving the problemof non-stationary thermal conductivity is reduced to determining
the temperature T at any point of the body with coordinates (x; y; τ) at any instant of
time. At the same time, boundary conditions of the 1st, 2nd, and 3rd kind are taken into
account. And also allow solving the problem of “fire resistance” of building structures
(with a certain accuracy) and predicting their behavior during a fire [2].

The most widespread are the experimental-calculation methods, as they are based on
the data of the conducted fire tests, and then the calculationmethod is used to conduct the
required number of experiments. Thus, the need to carry out experimental and calculation
methods will more effectively establish the dependence of the burning speed of the
surface of the plywood board on the presence of a fire-retardant substance, while the
fire-resistant plywood slows down the onset of thermal destruction of wooden beams as
a cladding element.

To conduct experimental studies, samplesweremade of solid pine beamswith dimen-
sions of 70 × 250 × 350 mm OSB-3Kronospan 350 × 350 mm, board with a thickness
of 18 mm, dry peeled birch veneer of the second grade with a thickness of 2 mm, and a
fire retardant solution of the company “Kompozit BS- 13”, selected glue based on Epoxy
resins with a working temperature range from -50°C to 120°C.

Themethod ofmanufacturing fire-resistant plywood includes impregnation of sheets
of 2 mm peeled veneer with fire retardant in a cold bath, their drying, application of glue,
formation of veneer packages, pressing of veneer with a term press [5]. Dry sheets of
peeled veneer with a moisture content of 7–10% were immersed in a hot bath with
impregnation solution at a temperature of 80–90 °C and kept in it for 30 min, after
which the sheets of peeled veneer were removed from the hot bath and immersed in a
cold bath with impregnation solution at a temperature of 20 °C and kept in it for 40 min.
Next, the impregnated sheets of peeled veneer were taken out of the bath, they were kept
above it for the excess impregnation solution to drain back into the bath, and they were
stacked in feet with mutually perpendicular direction of the fibers in adjacent layers
to redistribute the fire retardant in the veneer, that is, to diffuse salts from the surface
of the veneer to the inside, and kept in feet for 1 h. After that, the impregnated sheets
of veneer were dried to a moisture content of 8% and submitted to the operations of
applying glue, forming and pressing veneer packages, and pressing plywood. As a fire
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retardant substance for veneer impregnation, we used Kompozit BS-13 fire bioprotective
impregnation substance for wooden structures. As a substance for gluing, epoxy glue
“Khim kontakt-Epoxy” [3, 4] is used. Seven-layer plywood with a thickness of 10 mm
was produced according to the following operating parameters: temperature of the press
plates - 120–125 °C, pressing pressure 1.8–2.0 MPa, pressing duration - 10 min, glue
consumption - 1202 g/m. [5, 6].

The first stage of the production of samples was the drying of a solid wooden bar
with dimensions of 250x350x70 mm, which took place in open areas until the moisture
content of the wooden bars reached no more than 20%, since a high moisture content
significantly reduces the flammability ofwood and does not lose its protective action. The
second stage of the production of the samples was the direct facing of the wooden beam
with fire-resistant plywood, made in the above-described manner, with the help of self-
tapping screws. Temperature measurement in wooden beams with fire-resistant cladding
made of coniferous wood species showed that due to the moisture content of the wood
- as a rule, 12% - the conditional delay of the temperature rise above 100 °C becomes
relatively shorter. The charring zone is within the temperature range of 200–300 °C,
while the charring zone for pine is 200 °C (Fig. 1).

Fig. 1. Schematic view of the experimental metal sample fragment.

These samples-fragments of wooden beams were tested on the experimental fire
installation shown in Fig. 2. The standard fire temperature regime was used in the fire
chamber of the installation [4, 5]. This figure also shows the appearance of the sample
after testing, and the method of measuring charring thicknesses.

Thermocouples were used to measure the temperature in the furnace with a wire
diameter of 1.5 mm, chromel-alumel thermocouples TXA-VIII, which can be used to
measure temperature in the range from 0 °C to 1100 °C. To remove digital values of
temperature in places of installation of thermocouples used secondary electronic instru-
ments complete with Digitalmultimeter DT 838ºC, which are connected to thermocou-
ples. Range temperature measurement of this device is from -20ºС to 1370ºС. During
fire tests, indicators were taken every minute from four devices and were entered into
the protocol during 15, 30, 60 min of heating.
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Fig. 2. View of the experimental setup and sample after testing. Schematic representation of
measuring areas on the sample: L – length of the sample before the start of the test; L0 - is the
length of the non-charred layer of the sample; B0, B1, B2, B3 – width on each fragment of the
glued bar after the fire test; B is the width of the sample before the fire test.

Applying the data obtained from the fire tests conducted by the author’s team, the
limits of charring zone of samples-fragments of wooden beams were determined with
their approximation using flat Bezier curves of the third order, according to the exposure
time. An example of obtaining distribution data is shown in Fig. 3.

Some scientists whose work is highlighted [6–11] made the assumption that the
isotherms of the temperature field under the influence of the standard temperature regime
of a fire with a critical temperature Tkr = 200 °C there is a contour line of the charring
zone of the cross section of the wooden beam.

Fig. 3. Lines of the boundary of the charring zone with their approximation by means of Bezier
curves: (a) without fire protection; 1) the initial sample fragment before the test; 2) charring zone
for 15 min of testing; 2 *) Bezier curve for 15 min of testing; 3) charring zone for 30 min of
testing; 3 *) Bezier curve e for 30 min of testing; 4) charring zone for 60 min tests; 4 *) Bezier
curve for 60 min tests.
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According to the results presented in works [7, 8], it is possible to approximate the
contour of the charring zone using a certain parametric curve, for such approximation it
is convenient to use parametric Bézier curves. In this case, the configuration of Bézier
lines can be determined using 5 characteristic points, which are fixed on isotherms
with a critical temperature. To avoid the main drawback of this approach, which is the
insufficient accuracy of isotherm approximation, the approach described in [8] is used.
According to this approach, the position of the first three key points is fixed at the vertices
of the rectangle into which the isotherm fits, and the last two are fixed between them
on the sides of the described rectangle. Considering Figs. 2 and 3, as well as the above
assumptions and references, a scheme for determining the position of these key points
was built, shown in Fig. 4.

y r
r

1     2 3
4

Charring zone

Isotherm 200 ⁰C
approximated by the Bézier line

5
x

xc

Fig. 4. Scheme of positions of key points for establishing parametric functions of Bezier curve,
approximating the corresponding isotherms with the critical temperature of initiation of the char-
ring process, r-distances between key points 2,3 and 3,4 for the construction of Bezier lines, xc -
parametric characteristic of the end side mm and yc - the parametric characteristic of the side of
mm.

According to this scheme, the number of key points was determined for approximat-
ing the contours of the charring zone using Bezier lines. Using the coordinates of the
five key points determined in the manner described above, the corresponding parametric
function of the Bezier curve is determined, which has an implicit form according to the
expression [8]:

Ω(u) =
∑n

k=1
ωkBk,n(u), 0 ≤ u ≤ 1, (1)
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where n - 5 is the number of key points; Bk, n(u) – are Bernstein polynomials for
describing the parametric functions of Bezier curves; ωk – is a vector of corresponding
coordinates of key points for describing the parametric functions of Bezier curves.

Bernstein polynomials are written in the form of a formula:

Bp,n(u) = n!
p!(n − p)!u

p(1 − u)n−p (2)

where p - the degree of the Bernstein polynomial; и-is a parameter of implicit coordinate
functions.

The matrix Eq. (1) under the following conditions is written as an algebraic system
of two parametric equations:

x(u) =
n∑

p=1

xpBp,n(u), y(u) =
n∑

p=1

ypBp,n(u), (3)

Coordinate vectors are written through the following expressions:

ωx =
{

(0 xc − r xc xc xc)T ; xc > r
(0 0 xc xc xc)T ; xc ≤ r

, ωy = (ycycycyc − r 0)T ; 0 ≤ r ≤ yc., (4)

Coordinates, which are components of vectors (4), are calculated according to the
scheme shown in Fig. 4. Parameterization of Bezier curve functions is based on assump-
tions that the parameter r is determined by the largest overall size cross-section of the
beam in a dimensionless relative representation in the form of the parametric function r
= f(yc/h).

Such a record is necessary for the description of cross-sections with other overall
dimensions and their different ratios.

According to the work [11], the described rectangle for constructing Bezier curve
is determined by the parameters xc and yc, which are defined as functions using
dependencies (2) and (4). In this case, these functions are written in the form:

xc(t, t0s) =
{
0.5b − ds(t, t0s), b > 2ds(t, t0s)

0, b ≤ 2ds(t, t0s)
; yc(t, t0e) =

{
h − de(t, t0e), h > de(t, t0e)

0, h ≤ de(t, t0e)
, (5)

where b and h are the width and height of the beam section, respectively.
The parameter r, which determines the conditional radius of rounding of the contour

line of the charring zone, is defined as a parametric function similar to the parameters
of the described rectangle according to expressions (6) and (7):

r(t, t0e) =
{
Lu(t, t0e) · a, Lu(t, t0e)Ta > 0

0 Lu(t, t0e) · a ≤ 0
(6)

where, vector functions are defined by expressions using regression equations obtained
in [8]:

Lu(t, t0e) =
[
1 yc(t, t0e) · h−1 · · · yc(t, t0e)

6 · h−6
]T

a = (0.979 0.064 3.6 − 32.339 59.242 − 41.82 10.273),
(7)
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Using formulas (4)–(6), the algebraic system of equations for describing the contour
of the charring zone of the cross-section of fire-resistant wooden beams takes the form:

xb(u, t, t0s) =
n∑

p−1

ωx(t, t0s)Bp,n(u)

ωx(t, t0s) =
{

(0 xc(t, t0s) − r(t, t0e) xc(t, t0s) xc(t, t0s) xc(t, t0s))
T ; xc(t, t0s) > r(t, t0e)

(0 0 xc(t, t0s) xc(t, t0s) xc(t, t0s))
T ; xc(t, t0s) ≤ r(t, t0e)

(8)

yb(u, t, t0e) =
n∑

p−1

ωy(t, t0e)Bp,n(u)

ωy(t, t0e) =
{

(yc(t, t0e) yc(t, t0e) − r(t, t0e) yc(t, t0e) yc(t, t0e) 0)T ; yc(t, t0e) > r(t, t0e)
(yc(t, t0e) yc(t, t0e) yc(t, t0e) 0 0)T ; yc(t, t0e) ≤ r(t, t0e)

(9)

Using this mathematical apparatus, the main parameters for the construction of
Bezier curves for wooden beams, which are listed in the table, were determined 1,
delineating the contour of the charring zone of the cross-section of the beams with and
without fire-resistant cladding based on impregnated plywood. The constructed curves
are shown in Fig. 5.
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Fig. 5. The location of the contour line of the charring zone, approximated using the Bezier lines
in the cross-section of a wooden beam 100 × 200 without fire protection (a), with fire-resistant
cladding w= 10 mm (b); with fire-resistant cladding w= 20 mm (c) at different times of exposure
to the standard fire temperature regime: 1–15 min.; 2–30 min.; 3–45 min.; 4–60 min.; 5–90 min.;
6–120 min.
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Table 1. Structural parameters of cross-sections of wooden beams with fire protection based on
impregnated plywood

Section width, b, mm Cross section height, h, mm The width of the fire
protection layer, w, mm

100 200 0 10 20

FromFig. 5, it can be seen that the proposedmathematicalmodel allows to effectively
predict the geometric configuration of the charring zone of wooden beams with and
without fire-resistant cladding based on impregnated plywood, depending on the time
of exposure to the standard fire temperature regime (see Table 1).

To analyze the accuracy of the obtained data regarding the carbonization zone, a com-
parative analysis of the data obtained experimentally and the data obtained on the basis
of the calculation was carried out. For this, contours of carbonization zones were con-
structed for cross-sections of wooden beams, fragments of which were tested according
to the above-mentioned method.

In Fig. 6 shows the contours of the charring zone of cross-sections of wooden beams
with and without fire-resistant cladding based on impregnated plywood, which were
obtained by experimental and calculation methods.
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Fig. 6. The location of the contour line of the charring zone, approximated by the Bezier curve
in the cross-section of a 70 × 250 wooden beam without fire protection (a), with fire-resistant
cladding w = 10 mm (b); with fire-resistant cladding w = 20 mm (c) at different moments of
exposure to the standard fire temperature regime: 1 – calculated results; 2 – experimental results.

Analysis of the graphs shown in Fig. 6, showed that the proposed method of approx-
imating the contour of the charred cross-sectional area of wooden beams with fireproof
cladding based on impregnated plywood is sufficiently accurate as it reproduces this
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contour well, while the average relative error of contour reproduction is no more than
6.4%. This allows you to recreate the charring zone for beams with other cross-sections.

1 Conclusions

1. In the article, mathematical support was developed, which allows to predict the con-
figuration of the charred zone of wooden beams under the thermal influence of the
standard fire temperature regime;

2. The results of thework showagood convergence of the obtained datawhen comparing
them with experimental data, while the error, on average, is no more than 10%
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