

NATIONAL UNIVERSITY OF CIVIL DEFENCE OF UKRAINE

INTERNATIONAL SCIENTIFIC APPLIED CONFERENCE PROBLEMS OF EMERGENCY SITUATIONS (PES 2024)

SELECTED PEER-REVIEWED FULL TEXT PAPERS FROM THE INTERNATIONAL SCIENTIFIC APPLIED CONFERENCE "PROBLEMS OF EMERGENCY SITUATIONS" (PES 2024)

EDITED BY
ALEXEY VASILCHENKO
EVGENIY RYBKA
KONSTANTINOS SOTIRIADIS
MYKOLA SURIANINOV
OLEH TURUTANOV

NINA RASHKEVICH VLADIMIR ANDRONOV YURII OTROSH VOLODIMIR TRIGUB ANDRII KONDRATIEV

TRANS TECH PUBLICATIONS

National University of Civil Defence of Ukraine

International Scientific Applied Conference Problems of Emergency Situations (PES 2024)

Selected peer-reviewed full text papers from the International Scientific Applied Conference "Problems of Emergency Situations" (PES 2024)

Edited by
Alexey Vasilchenko
Evgeniy Rybka
Konstantinos Sotiriadis
Mykola Surianinov
Oleh Turutanov
Nina Rashkevich
Vladimir Andronov
Yurii Otrosh
Volodimir Trigub
Andrii Kondratiev

National University of Civil Defence of Ukraine

International Scientific Applied Conference Problems of Emergency Situations (PES 2024)

Selected peer-reviewed full text papers from the International Scientific Applied Conference "Problems of Emergency Situations" (PES 2024)

Selected peer-reviewed full text papers from the International Scientific Applied Conference "Problems of Emergency Situations" (PES 2024), May 16, 2024, Kharkiv, Ukraine

Edited by

Alexey Vasilchenko, Evgeniy Rybka, Konstantinos Sotiriadis, Mykola Surianinov, Oleh Turutanov, Nina Rashkevich, Vladimir Andronov, Yurii Otrosh, Volodimir Trigub and Andrii Kondratiev

Copyright © 2024 Trans Tech Publications Ltd, Switzerland

All rights reserved. No part of the contents of this publication may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

Trans Tech Publications Ltd Seestrasse 24c CH-8806 Baech Switzerland https://www.scientific.net

Volume 156 of Advances in Science and Technology ISSN print 1662-8969 ISSN web 1662-0356

Full text available online at http://www.scientific.net

Distributed worldwide by

Trans Tech Publications Ltd Seestrasse 24c CH-8806 Baech Switzerland

Phone: +41 (44) 922 10 22 e-mail: sales@scientific.net

Preface

The annual International Scientific Applied Conference "Problems of Emergency Situations" (PES) is organized by the National University of Civil Defence of Ukraine (Ukraine, Kharkiv). The representatives from the Odesa State Academy of Civil Engineering and Architecture (Ukraine, Odesa) were involved as partners in PES 2024.

More than 250 participants registered for this year's conference. Scientists from 11 countries took part in the meeting, including the Republic of Austria, Azerbaijanian Republic, Italy, Poland, Czech Republic, as well as the Swiss Confederation, the Kingdom of Spain, the United States of America, the United Kingdom of Great Britain and Northern Ireland, Ukraine, and Japan. More than 170 reports were submitted to the conference.

The purpose of the conference was to discuss issues related to the problems and prospects of introducing the latest developments and technologies aimed at preventing emergencies, minimizing their consequences in the field of civil defence, sharing experience and finding new facets of scientific cooperation, solving problems of recent emergencies that create a global threat to humanity.

Table of Contents

Preface

Chapter 1: Mechanics of Structures

Effective Application of Numerical Approaches and Green Functions for the Process of Modelling Spheres	
V. Pasternak, A. Ruban, O. Bilotil and D. Karpova	3
Use of the Boundary Element Method for Solving Problems of Predicting the Regularities of Formation of the Structure of Non-Isometric Components V. Pasternak, A. Ruban, O. Chernenko and O. Nadon	15
Special Features of Using Mathematical Modeling for the Study of Tetrahedral Elements V. Pasternak, A. Ruban, K. Pasynchuk and P. Polyanskyi	27
Justification of the Dynamics of Extra-Project Loads on Building Structures M. Nalysko, A. Makhinko, A. Sopilniak and Y. Cheberiachko	39
Chapter 2: Building Structures	
Deformability and Crack Resistance of Reinforced Concrete and Fiber-Reinforced Concrete Cross-Beam Systems	
M. Surianinov, I. Aksyonova, A. Perperi and Z. Holovata	49
Comparative Analysis of the Load-Bearing Capacity and Crack Resistance of Reinforced Concrete and Fiber-Reinforced Concrete Airfield Slabs I. Korneeva, A.I. Kostiuk, O. Posternak and M. Surianinov	57
Modeling of Building Structures Resistance to Collapse Failure from Explosive Impact M. Barabash, N. Kostyra and V. Maksymenko	65
Analytical Calculation of Beams on Winkler's Variable Elastic Foundation Y. Krutii, M. Surianinov, V. Vakulenko, M. Soroka and N. Vasilieva	75
Chapter 3: Research and Design of Machines and Equipment	
Ways to Reduce the Mass of Body Parts of Closed Gears I. Matsiuk, O. Tverdokhlib, D. Dovhal and B. Tsymbal	83
Investigation of Diffraction of Electromagnetic Microwaves on Explosive Materials A. Karpov, M. Kustov, O. Basmanov and O. Kulakov	91
Using of Hydrogen Sorbtion Storing Technology Based on Metal Hydrides for Cooling of High-Power Electric Generators with Steam Turbines	102
K. Umerenkova, O. Kondratenko, H. Koloskova, O. Lytvynenko and V. Borysenko	103
Mathematical Model of the Dynamics of Spherical Elements V. Pasternak, A. Ruban, O. Holii and S. Vavreniuk	117
Computer Modelling of the Process of Separation of Heterogeneous Elements (Spheres) V. Pasternak, A. Ruban, Y. Horbachenko and S. Vavreniuk	127
Chapter 4: Waste Recycling and Waste Management	
Multi-Criteria Analysis of Technology that Ensure Environmental Safety in Waste Incineration	
O. Krot, O. Pukhovoi, N. Kosenko and Y. Levashova	139
Development and Implementation of Environmentally Safe Biotechnologies for the Utilization of Aquatic Organisms Biomass	
S. Digtar, V. Nykyforov, M. Malovanyy, G. Krusir and S. Huhlych	147

Keyword Index

A		Electric Generators	103
Airfield Slab	57	Electromagnetic Microwave	91
Alternative Motor Fuels	103	Element Dynamics	3, 117, 127
Analytical Method	75	Emergency Explosive Impact	65
Angles	15	Energy from Waste	139
Approximation	27	Environment Protection Technologies	103
_		Environmental Safety	103
В		Equilibrium Equations	27
Beam	75	Errors	27
Bending Equation	75	Eutrophication	147
Bio-Conversion	147	Exact Solution	75
Bio-Fertilizer	147	Experiment	49
Biotechnology	147	Explosive Material	91
Blue-Green Algae	147	Extra-Project Load	39
Boundaries	15		
Boundary Conditions	117	\mathbf{F}	
Boundary Element Method	3, 15	Fiber-Reinforced Concrete	49, 57
Building Structure	39	Finite Element Method	3, 27, 65
		Flue Gas Treatment	139
C		Force Redistribution	65
Calculation Method	39		
Closed Mechanical Transmission	83	\mathbf{G}	
Collapse Failure	65	Gear Reducer	83
Component Simulation	15	Geometric Parameters	27
Constants	15	Green's Theory	3
Convergence of Methods	27		J
Cooling	103	Н	
Correlation Dependencies	127		
Crack Resistance	57, 65	Hydrogen	103
Critical Loads	65	_	
Cross-Beam System	49	I	
		Impact Dynamics	39
D		Initial Data	3
Dielectric Loss Angle Tangent	91	Interconnections	117
Dielectric Permittivity	91	Iteration	27
Diffraction	91		
Dioxins	139	${f L}$	
Discrete Element Method	117	Liapunov's Indices	127
Dynamics	15	LIRA-SAPR	65
_ <i>y</i>	15	Load-Bearing Capacity	57
E		Loud Dearing Capacity	31
Elastic Foundation	75	M	
Electric Field	91	Magnetic Field	91
	<i>,</i> .	11145110110 1 1014	71

Metal Hydrides	103		
Methanogenesis	147	\mathbf{V}	
Modeling	27	Variable Coefficient of Subgrade	75
Modelling	3, 15, 117, 127	Resistance	73
Multi-Criteria Analysis	139	\mathbf{W}	
Municipal Solid Waste	139	Waste Incineration Plant	120
N		Wave Length	139 91
Nonlinear Calculation	65	Wave Vector Winkler Hypothesis	91 75
P		31	
Physical and Mechanical Parameters	127		
Plastic Inserts	83		
Plastic Joints	65		
Point Vectors	3		
Polycyclic Aromatic Hydrocarbons	139		
Potential	3, 15		
R			
Reciprocating Internal Combustion Engines	103		
Reduction of Mass	83		
Reflection Coefficient	91		
S			
Separation	127		
Shock Air Wave	39		
Spheres	117, 127		
Stability	65		
Steam Turbines	103		
Storing Technologies	103		
Survivability	65		
System	127		
T			
Tetrahedral	27		
Thermocatalytic Treatment	139		
Three-Dimensional Model	117		
Three-Dimensional Space	3, 27		
Topological Optimization of Design	83		
Transmission Coefficient	91		
Turbochargers	103		

Author Index

A		
Aksyonova, I.	49	M
		Makhinko, A. 39
В		Maksymenko, V. 65
Barabash, M.	65	Malovanyy, M. 147
Basmanov, O.	91	Matsiuk, I. 83
Bilotil, O.	3	
Borysenko, V.	103	N
Borysomic, v.	105	Nadon, O. 15
C		Nalysko, M. 39
	20	Nykyforov, V. 147
Cheberiachko, Y.	39	
Chernenko, O.	15	P
D		Pasternak, V. 3, 15, 27, 117,
		127
Digtar, S.	147	Pasynchuk, K. 27
Dovhal, D.	83	Perperi, A. 49
		Polyanskyi, P. 27
Н		Posternak, O. 57
Holii, O.	117	Pukhovoi, O. 139
Holovata, Z.	49	
Horbachenko, Y.	127	R
Huhlych, S.	147	Ruban, A. 3, 15, 27, 117,
		127
K		
Karpov, A.	91	S
Karpova, D.	3	Sopilniak, A. 39
Koloskova, H.	103	Soroka, M. 75
Kondratenko, O.	103	Surianinov, M. 49, 57, 75
Korneeva, I.	57	
Kosenko, N.	139	T
Kostiuk, A.I.	57	Tsymbal, B. 83
Kostyra, N.	65	Tverdokhlib, O. 83
Krot, O.	139	TVCTGOKIIIO, O.
Krusir, G.	147	U
Krutii, Y.	75	
Kulakov, O.	91	Umerenkova, K. 103
Kustov, M.	91	**
		\mathbf{V}
\mathbf{L}		Vakulenko, V. 75
Levashova, Y.	139	Vasilieva, N. 75
Lytvynenko, O.	103	Vavreniuk, S. 117, 127